
BADNESS 10000

The Wayback Machine - https://web.archive.org/web/20140329111415/http://ph...

A functional solution to

Twitter's waterflow problem
WRITTEN BY PHILIP NILSSON

I recently came across an interesting problem at Michael Kozakov’s blog.

There are some interesting thoughts on the whole software interview

process over there. I don’t have much to add on the subject. However, I

thought the problem presented was quite interesting.

After some thought I managed to boil this down to a simple functional

one-liner I though was interesting enough to share. First, let’s take a look

at the problem definition.

Quoting the original source:

“Consider the following picture:”

Levels

“In this picture we have walls of different heights. This

picture is represented by an array of integers, where the

value at each index is the height of the wall. The picture

above is represented with an array as [2,5,1,2,3,4,7,7,6].”

Filled

“Now imagine it rains. How much water is going to be

accumulated in puddles between walls?”

A functional solution to Twitter's waterflow problem -... https://web.archive.org/web/20140329111415/http://ph...

1 of 5 13/05/2024, 12:29

https://web.archive.org/web/20140329111415/http://philipnilsson.github.io/Badness10k
https://web.archive.org/web/20140329111415/http://philipnilsson.github.io/Badness10k
https://web.archive.org/web/20140329111415/http://qandwhat.apps.runkite.com/i-failed-a-twitter-interview/
https://web.archive.org/web/20140329111415/http://qandwhat.apps.runkite.com/i-failed-a-twitter-interview/

“We count volume in square blocks of 1x1. So in the picture

above, everything to the left of index 1 spills out. Water to

the right of index 7 also spills out. We are left with a puddle

between 1 and 6 and the volume is 10.”

How would we go about finding a solution to this problem? I find this to

be especially interesting, as there were many solutions posted to this

problem over here, that were incorrect. My own immediate intuition led

me to a solution that didn’t cover all cases as well.

How can we analyze this problem such that we can get a solution and

implementation that we can be confident is correct?

The approach I suggest would be to start with the question: “Given a

block in this graph, when will it be filled with water? We can assume

there will be enough rain to fill any holes as far as is possible, so the only

question is when the water will spill over to the side.

Then, the condition for the water to stay in a given square is that there is

some wall to the left that is at least as high as the height of the given

square, as well as some wall to the right that is as high as the height of

the given square.

If we let be the height of index , and let denote the highest

point to the left of index , and similarly define we can express

this as.

A sqaure of height , is filled when

We can simplify the conjunction by expressing this via

We can now easily see that the height of the water level of each index,

which we’ll call can be expressed by turning this inequality into

hi i high
left
i

i high
right
i

hi

≤ hig ∧ ≤ highi h
left
i hi h

right
i

min

≤ min(hig , hig)hi h
left
i h

right
i

leveli

A functional solution to Twitter's waterflow problem -... https://web.archive.org/web/20140329111415/http://ph...

2 of 5 13/05/2024, 12:29

https://web.archive.org/web/20140329111415/https://gist.github.com/mkozakov/59af0fd5bddbed1a0399
https://web.archive.org/web/20140329111415/https://gist.github.com/mkozakov/59af0fd5bddbed1a0399

an equality.

This leaves us in good shape for actually computing the answer. We start

by calculating the values of . Starting with we note that this

can be expressed as a simple recursive equation in terms of and itself.

This a recursive relation, where we apply an operator () to

accumulate values in a list (). We have a tool in the functional

programming arsenal for computing exactly this, namely scanl1.

For e.g. the input from the original post, we get

scanl1 max h

>> [2,5,5,5,5,5,7,7,7]

Similarly for we have

And we can use to compute it

scanr1 max h

>> [7,7,7,7,7,7,7,7,6]

Now getting back to , which, as we recall, was defined as

leve = min(hig , hig)li h
left
i h

right
i

high high
left
i

h

hig =h
left
0 h0

hig = max(, hig)h
left
i+1 hi+1 h

left
i

max

h

h = [2,5,1,2,3,4,7,7,6]

highright

hig =hright
n hn

hig = max(, hig)h
right
i−1 hi h

left
i

scanr1

level

A functional solution to Twitter's waterflow problem -... https://web.archive.org/web/20140329111415/http://ph...

3 of 5 13/05/2024, 12:29

https://web.archive.org/web/20140329111415/http://hackage.haskell.org/package/base-4.6.0.1/docs/Prelude.html#v:scanl1
https://web.archive.org/web/20140329111415/http://hackage.haskell.org/package/base-4.6.0.1/docs/Prelude.html#v:scanl1
https://web.archive.org/web/20140329111415/http://hackage.haskell.org/package/base-4.6.0.1/docs/Prelude.html#v:scanl1

This is easy to compute, we only need to apply a function ()

element-wise, which we can do via an application of

zipWith min (scanl1 max h) (scanr1 max h)

>> [2,5,5,5,5,5,7,7,6]

Now we have defined the height of the water level at each index, all that

is left is subtract the height of the “ground”, element-wise, to get the

amount of water contributed at each index.

let level h =

 zipWith min (scanl1 max h) (scanr1 max h)

zipWith (-) (level h) h

>> [0,0,4,3,2,1,0,0,0]

Now all that remains is taking the sum of the contributions at each index.

This is, of course, as simple as applying the function.

Our complete implementation is now

water h = sum $

 zipWith (-)

 (zipWith min (scanl1 max h) (scanr1 max h))

 h

water [2,5,1,2,3,4,7,7,6]

>> 10

We can now be confident that our implementation is correct. The

breakdown of the problem corresponds nicely to our mathematical

analysis, and our code is clean and declarative. The only price we have to

leve = min(hig , hig)li h
left
i h

right
i

min

zipWith

sum

A functional solution to Twitter's waterflow problem -... https://web.archive.org/web/20140329111415/http://ph...

4 of 5 13/05/2024, 12:29

pay is a linear use of extra space (arising from the use of), which

is cleverly avoided in Michael Kozakov’s imperative solution.

« Full blog

© 2013 Philip Nilsson — powered by Wintersmith

scanr1

A functional solution to Twitter's waterflow problem -... https://web.archive.org/web/20140329111415/http://ph...

5 of 5 13/05/2024, 12:29

https://web.archive.org/web/20140329111415/https://gist.github.com/mkozakov/59af0fd5bddbed1a0399
https://web.archive.org/web/20140329111415/https://gist.github.com/mkozakov/59af0fd5bddbed1a0399
https://web.archive.org/web/20140329111415/http://philipnilsson.github.io/Badness10k/
https://web.archive.org/web/20140329111415/http://philipnilsson.github.io/Badness10k/
https://web.archive.org/web/20140329111415/https://github.com/jnordberg/wintersmith
https://web.archive.org/web/20140329111415/https://github.com/jnordberg/wintersmith

